67,693 research outputs found

    The low energy expansion of the one-loop type II superstring amplitude

    Get PDF
    The one-loop four-graviton amplitude in either of the type II superstring theories is expanded in powers of the external momenta up to and including terms of order s^4 log s R^4, where R^4 denotes a specific contraction of four linearized Weyl tensors and s is a Mandelstam invariant. Terms in this series are obtained by integrating powers of the two-dimensional scalar field theory propagator over the toroidal world-sheet as well as the moduli of the torus. The values of these coefficients match expectations based on duality relations between string theory and eleven-dimensional supergravity.Comment: harvmac (b), 25 pages, 3 eps figures. v2: Factors of 2 corrected. Conclusion unchange

    Linear sawtooth voltage-wave generator employing transistor timing circuit having capacitor-zener diode combination feedback Patent

    Get PDF
    Linear sawtooth voltage wave generator with transistor timing circuit having capacitor and zener diode feedback loop

    Non-equilibrium conductivity at quantum critical points

    Get PDF
    Quantum criticality provides an important route to revealing universal non-equilibrium behaviour. A canonical example of a quantum critical point is the Bose-Hubbard model, which we study under the application of an electric field. A Boltzmann transport formalism and Ï”\epsilon-expansion are used to obtain the non-equilibrium conductivity and current noise. This approach allows us to explicitly identify how a universal non-equilibrium steady state is maintained, by identifying the rate-limiting step in balancing Joule heating and dissipation to a heat bath. It also reveals that the non-equilibrium distribution function is very far from a thermal distribution.Comment: 5 pages, 2 figure

    Remarks on the Classical Size of D-Branes

    Get PDF
    We discuss different criteria for `classical size' of extremal Dirichlet p-branes in type-II supergravity. Using strong-weak coupling duality, we find that the size of the strong-coupling region at the core of the (p<3)-branes, is always given by the asymptotic string scale, if measured in the weakly coupled dual string metric. We also point out how the eleven-dimensional Planck scale arises in the classical 0-brane solution, as well as the ten-dimensional Planck scale in the D-instanton solution.Comment: 8 pp, harvma

    Four-quark flux distribution and binding in lattice SU(2)

    Get PDF
    The full spatial distribution of the color fields of two and four static quarks is measured in lattice SU(2) field theory at separations up to 1 fm at beta=2.4. The four-quark case is equivalent to a qbar q qbar q system in SU(2) and is relevant to meson-meson interactions. By subtracting two-body flux tubes from the four-quark distribution we isolate the flux contribution connected with the four-body binding energy. This contribution is further studied using a model for the binding energies. Lattice sum rules for two and four quarks are used to verify the results.Comment: 46 pages including 71 eps figures. 3D color figures are available at www.physics.helsinki.fi/~ppennane/pics

    Experimental and CFD airflow studies of a cleanroom with special respect to air supply inlets

    Get PDF
    Investigations were carried out into the airflow in a non-unidirectional airflow cleanroom and its affect on the local airborne particle cleanliness The main influence was the method of air supply A supply inlet with no diffuser gave a pronounced downward jet flow and low levels of contamination below it, but poorer than average conditions in much of the rest of the room A 4-way diffuser gave much better air mixing and a more even airborne particle concentration throughout the cleanroom Other variables such as air inlet supply velocity, temperature difference between air supply and the room, and the release position of contamination also influenced the local airborne cleanliness A CFD analysis of airflow fields in a cleanroom was compared with measured values It was considered that a turbulent intensity of 6%, and a hydraulic diameter based on the actual size of the air inlet, should be used for the inlet boundary conditions and, when combined with a k-epsilon standard turbulence model, a reasonable prediction of the airflow and airborne particle concentration was obtained

    Coulomb screening in mesoscopic noise: a kinetic approach

    Full text link
    Coulomb screening, together with degeneracy, is characteristic of the metallic electron gas. While there is little trace of its effects in transport and noise in the bulk, at mesoscopic scales the electronic fluctuations start to show appreciable Coulomb correlations. Within a strictly standard Boltzmann and Fermi-liquid framework, we analyze these phenomena and their relation to the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two distinct screening mechanisms for mesoscopic fluctuations. One is the self-consistent response of the contact potential in a non-uniform system. The other couples to scattering, and is an exclusively non-equilibrium process. Contact-potential effects renormalize all thermal fluctuations, at all scales. Collisional effects are relatively short-ranged and modify non-equilibrium noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication in J. Phys.: Cond. Ma

    Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    Full text link
    As part of a multifaceted effort to exploit better the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high S/N time-averaged optical spectra of varying spectral resolution from 1.0 \AA\ to 8.7 \AA, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are : Teff= 29,850 ±\pm 60 K, log gg = 5.46 ±\pm 0.01, and log N(He)/N(H) = −-2.88 ±\pm 0.02. We also modeled for the first time the He II line at 1640 \AA\ from the STIS archive spectrum of the star and we found with this line an effective temperature and a surface gravity that match well the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.Comment: Accepted for publication in ApJ, April 201

    Difficulties with Recollapsing models in Closed Isotropic Loop Quantum Cosmology

    Full text link
    The use of techniques from loop quantum gravity for cosmological models may solve some difficult problems in quantum cosmology. The solutions under a number of circumstances have been well studied. We will analyse the behaviour of solutions in the closed model, focusing on the behaviour of a universe containing a massless scalar field. The asymptotic behaviour of the solutions is examined, and is used to determine requirements of the initial conditions.Comment: 10 pages, accepted to Phys. Rev.
    • 

    corecore